CS/SEME 566: Graphical Models for Reasoning Under Uncertainty

This course will introduce students to graphical models, such as Bayesian networks, Hidden Markov Models, Kalman filters, particle filters, and structural equation models. Graphical models are applicable in a wide variety of work in computer science for reasoning under uncertainty such as user modeling, speech recognition, computer vision, object tracking, and determining a robot’s location. This course will cover 1) using data to estimate the parameters and structure of a model using techniques such as expectation maximization, 2) understanding techniques for performing efficient inference on new observations such as junction trees and sampling, and 3) learning about evaluation techniques to determine whether a particular model is a good one.

Prerequisites

CS 534 Artificial Intelligence or permission of the instructor