This course provides students with knowledge and understanding of the applications of statistics in modern genetics and bioinformatics. The course generally covers population genetics, genetic epidemiology, and statistical models in bioinformatics. Specific topics include meiosis modeling, stochastic models for recombination, linkage and association studies (parametric vs. nonparametric models, family-based vs. population-based models) for mapping genes of qualitative and quantitative traits, gene expression data analysis, DNA and protein sequence analysis, and molecular evolution. Statistical approaches include log-likelihood ratio tests, score tests, generalized linear models, EM algorithm, Markov chain Monte Carlo, hidden Markov model, and classification and regression trees. Students may not receive credit for both MA 584 and MA 4603.
Prerequisites
knowledge of probability and statistics at the undergraduate level