This course is designed to introduce students to the field of fiber optics, with an emphasis on design and working principles of fiber optical sensors for mechanical, biological, and chemical measurements. Students will be able to learn the basic knowledge and working principles of optical fibers and fiber optical components, as well as practical design guidelines and applications of fiber optical sensing systems. The first half of the course will introduce the fundamentals of fiber optics, including working principles of optical fibers, single-mode and multimode fibers, properties of optical fibers, passive fiber optical devices, light sources, and optical detectors. The second half will focus on practical fiber optical sensors and sensing systems, including working principles of fiber optical sensors, intensity-based and interferometer-based fiber optical sensors, fiber Bragg gratings, and low-coherence fiber optical interferometers. Specifically, design and implementation of fiber optical sensors and sensing systems for strain and pressure measurements will be discussed in detail. Measurement characteristics and signal processing of fiber optical sensing systems for different applications will be introduced.
Undergraduate level stress analysis and wave fundamentals, such as ES 2502, PH 1140. Knowledge of vibrations such as ME 4506 is preferred but not required.