This course is devoted to the numerical solution of partial differential equations encountered in engineering sciences. Finite element methods are introduced and developed in a logical progression of complexity. Topics covered include matrix structural analysis variation form of differential equations, Ritz and weighted residual approximations, and development of the discretized domain solution. Techniques are developed in detail for the one- and two-dimensional equilibrium and transient problems. These numerical strategies are used to solve actual problems in heat flow, diffusion, wave propagation, vibrations, fluid mechanics, hydrology and solid mechanics. Weekly computer exercises are required to illustrate the concepts discussed in class. Students cannot receive credit for this course if they have taken the Special Topics (ME 593E) version of the same course or ME 533 or CE 524.
CE/ME 5303: Applied Finite Element Methods in Engineering
Credits
2.0