This course provides an introduction to a broad range of modern numerical techniques that are widely used in computational mathematics, science, and engineering. It is suitable for both mathematics majors and students from other departments. It covers introductory-level material for subjects treated in greater depth in MA 512 and MA 514 and also topics not addressed in either of those courses.
Subject areas include numerical methods for systems of linear and nonlinear equations, interpolation and approximation, differentiation and integration, and differential equations. Specific topics include basic direct and iterative methods for linear systems; classical rootfinding methods; Newton’s method and related methods for nonlinear systems; fixed-point iteration; polynomial, piecewise polynomial, and spline interpolation methods; least-squares approximation; orthogonal functions and approximation; basic techniques for numerical differentiation; numerical integration, including adaptive quadrature; and methods for initial-value problems for ordinary differential equations. Additional topics may be included at the instructor’s discretion as time permits.
Both theory and practice are examined.
Error estimates, rates of convergence, and the consequences of finite precision arithmetic are also discussed. Topics from linear algebra and elementary functional analysis will be introduced as needed. These may include norms and inner products, orthogonality and orthogonalization, operators and projections, and the concept of a function space.
Prerequisites
knowledge of undergraduate linear algebra and differential equations is assumed, as is familiarity with MATLAB or a higher-level programming language