MA 552: Distribution-Free and Robust Statistical Methods

Credits 3.0
Distribution-free statistical methods relax the usual distributional modeling assumptions of classical statistical methods. Robust methods are statistical procedures that are relatively insensitive to departures from typical assumptions, while retaining the expected behavior when assumptions are satisfied. Topics covered include, time permitting, order statistics and ranks; classical distribution-free tests such as the sign, Wilcoxon signed rank, and Wilcoxon rank sum tests, and associated point estimators and confidence intervals; tests pertaining to one and two-way layouts; the Kolmogorov-Smirnov test; permutation methods; bootstrap and Monte Carlo methods; M, L, and R estimators, regression, kernel density estimation and other smoothing methods. Comparisons will be made to standard parametric methods.
Prerequisites

knowledge of MA 541 is assumed, but may be taken concurrently