This course focuses on analysis of models rather than conceptualization and model development.
It provides techniques for exercising models, improving their quality and gaining added insights into what models have to say about a problem. Five major topics are covered: use of subscripts, achieving and testing for robustness, use of numerical data, sensitivity analysis, and optimization/calibration of models. The subscripts discussion provides techniques for dealing with detail complexity by changing model equations but not adding additional feedback structure. Robust models are achieved by using good individual equation formulations and making sure that they work together well though automated behavioral experiments. Data, especially time series data, are fundamental to finding and fixing shortcomings in model formulations. Sensitivity simulations expose the full range of behavior that a model can exhibit. Finally, the biggest section, dealing with optimization and calibration of models develops techniques for both testing models against data and developing policies to achieve specified goals. Though a number of statistical issues are touched upon during the course, only a basic knowledge of statistics and statistical hypothesis testing is required.
Prerequisites
SD 550 System Dynamics Foundation: Managing Complexity and SD 551 Modeling and Experimental Analysis of Complex Problems, or permission of the instructor.